Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mar Pollut Bull ; 189: 114763, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2256996

RESUMEN

In April 2020, the Covid-19 pandemic changed human behaviour worldwide, creating an increased demand for plastic, especially single-use plastic in the form of personal protective equipment. The pandemic also provided a unique situation for plastic pollution studies, especially microplastic studies. This study looks at the impact of the Covid-19 pandemic and three national lockdowns on microplastic abundance at five sites along the river Thames, UK, compared to pre-Covid-19 levels. This study took place from May 2019-May 2021, with 3-L water samples collected monthly from each site starting at Teddington and ending at Southend-on-Sea. A total of 4480 pieces, the majority of fibres (82.1 %), were counted using light microscopy. Lockdown 2 (November 2020) had the highest average microplastic total (27.1 L-1). A total of 691 pieces were identified via Fourier Transform Infrared Spectroscopy (FTIR). Polyvinyl chloride (36.19 %) made up the most microplastics identified. This study documents changes in microplastic abundance before, during and after the Covid-19 pandemic, an unprecedented event, as well as documenting microplastic abundance along the river Thames from 2019 to 2021.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Ríos/química , Pandemias , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , COVID-19/epidemiología , Control de Enfermedades Transmisibles
2.
Environ Sci Pollut Res Int ; 30(17): 49487-49497, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2240337

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the on-going COVID-19 pandemic. In March 2020, it was declared global pandemic, causing millions of deaths. An evident tendency of global pharmaceutical consumption due to COVID-19 pandemic should be seen worldwide, and this increase might suppose an environmental threat. Pharmaceuticals administrated at home or in pharmacies are excreted by faeces and urine after consumption, and wastewater treatment plants (WWTPs) are not able to remove all pharmaceuticals residues that eventually will end up in the aquatic media (rivers and sea). For this reason, analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) have become prominent to identify and quantify pharmaceuticals residues in aquatic matrices. In view of the scarce data on the occurrence of pharmaceuticals used as COVID-19 treatment, the aim of the present study was to evaluate the presence of these class of pharmaceuticals in river water which were dexamethasone, prednisone, ciprofloxacin, levofloxacin, remdesivir, ritonavir, lopinavir, acetaminophen, hydroxychloroquine, chloroquine and cloperastine, their toxicity in the aquatic environment using D. magna and to perform an exhaustive risk assessment in seven points of the Llobregat river basin. Dexamethasone, cloperastine and acetaminophen were the pharmaceuticals with higher concentrations, showing mean levels between 313 and 859 ng L-1.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Humanos , SARS-CoV-2 , España , Espectrometría de Masas en Tándem , Ríos/química , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Pandemias , Tratamiento Farmacológico de COVID-19 , Acetaminofén , Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas , Dexametasona/análisis
3.
Int J Environ Res Public Health ; 19(15)2022 07 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1994034

RESUMEN

This paper contributes to the study of regional economic resilience by analyzing the dynamic characteristics and influence mechanisms of resilience from the perspective of spatial heterogeneity. This paper focuses on the resistance and recoverability dimensions of resilience and analyzed the dynamic changes in economic resilience in China's Yellow River Basin in response to the 2008 economic crisis. The multi-scale geographical weighted regression model was utilized to examine the effect of key factors on regional economic resilience. Our findings show the following: (1) The resistance of the Yellow River Basin to the financial crisis was high; however, the recoverability decreased significantly over time. (2) The spatial heterogeneity of driving factors was significant, and they had different effect scales on economic resilience. Related variety, government agency, environment, and opening to the global economy had a significant effect on economic resilience only in a specific small range. Specialization, unrelated variety, and location had opposite effects in different regions of the Yellow River Basin. (3) Specialization limited the area's resistance to shock but enhanced the recoverability. Related variety improved regional economic resilience. Unrelated variety was not conducive to regional resistance to shock and had opposite effects on the recoverability in different regions. (4) Government agency and financial market promoted regional economic resilience. Environment pollution and resource-based economic structure limited regional economic resilience. Opening to the global economy and urban hierarchy limited regional resistance to shock, but strong economic development had the opposite effect of improved regional resistance. The location in the east of the Yellow River Basin enhanced the recoverability; however, the location in the west limited the recoverability.


Asunto(s)
Recesión Económica , Ríos , China , Desarrollo Económico , Ríos/química
4.
Environ Toxicol Chem ; 41(3): 687-714, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1706213

RESUMEN

River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.


Asunto(s)
COVID-19 , Ríos , Antibacterianos/análisis , Antibacterianos/farmacología , China , Farmacorresistencia Bacteriana/genética , Ecosistema , Genes Bacterianos , Humanos , Ríos/química , SARS-CoV-2
5.
Sci Rep ; 11(1): 20140, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1462038

RESUMEN

The global economic activities were completely stopped during COVID-19 lockdown and continuous lockdown partially brought some positive effects for the health of the total environment. The multiple industries, cities, towns and rural people are completely depending on large tropical river Damodar (India) but in the last few decades the quality of the river water is being significantly deteriorated. The present study attempts to investigate the river water quality (RWQ) particularly for pre- lockdown, lockdown and unlock period. We considered 20 variables per sample of RWQ data and it was analyzed using novel Modified Water Quality Index (MWQI), Trophic State Index (TSI), Heavy Metal Index (HMI) and Potential Ecological Risk Index (RI). Principal component analysis (PCA) and Pearson's correlation (r) analysis are applied to determine the influencing variables and relationship among the river pollutants. The results show that during lockdown 54.54% samples were brought significantly positive changes applying MWQI. During lockdown, HMI ranged from 33.96 to 117.33 with 27.27% good water quality which shows the low ecological risk of aquatic ecosystem due to low mixing of toxic metals in the river water. Lockdown effects brought river water to oligotrophic/meso-eutrophic condition from eutrophic/hyper-eutrophic stage. Rejuvenation of river health during lockdown offers ample scope to policymakers, administrators and environmentalists for restoration of river health from huge anthropogenic stress.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles/normas , Ríos/química , Contaminantes Químicos del Agua/análisis , Calidad del Agua , COVID-19/epidemiología , COVID-19/transmisión , Monitoreo del Ambiente/estadística & datos numéricos , Restauración y Remediación Ambiental/estadística & datos numéricos , Humanos , Metales Pesados/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA